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Abstract. By solving the Fokker-Planck equation directly we
examine the effects of annihilation, particle escape and injec-
tion on the form of a steady-state positron distribution in ther-
mal hydrogen plasmas with kT < mec

2. The positron fraction
considered is small enough, so it does not affect the electron
distribution which remains Maxwellian. We show that the es-
cape of positrons in the form of electron-positron pairs and/or
pair plasma, e.g. due to the diffusion or radiation pressure, has
an effect on the positron distribution causing, in some cases, a
strong deviation from a Maxwellian. Meanwhile, the distortion
of the positron spectrum due to only annihilation is not higher
than a few percent and the annihilation line shape corresponds to
that of thermal plasmas. Additionally, we present accurate for-
mulas in the form of a simple expression or a one-fold integral
for energy exchange rates, and losses due to Møller and Bhabha
scattering, e+e−-, ee- and ep-bremsstrahlung in thermal plas-
mas as well as due to Compton scattering in the Klein-Nishina
regime.

Suggesting that annihilation features observed by SIGMA
telescope from Nova Muscae and the 1E 1740.7–2942 are due to
the positron/electron slowing down and annihilation in thermal
plasma, the electron number density and the size of the emitting
regions have been estimated. We show that in the case of Nova
Muscae the observed radiation is coming from a pair plasma
stream (ne+ ≈ ne− ) rather than from a gas cloud. We argue
that two models are probably relevant to the 1E 1740.7–2942
source: annihilation in (hydrogen) plasmane+ <∼ ne− at rest, and
annihilation in the pair plasma stream, which involves matter
from the source environment.

Key words: diffusion – plasmas – radiation mechanisms: non-
thermal – Galaxy: center – gamma rays: theory

1. Introduction

Positron production and annihilation are widespread processes
in nature. Gamma-ray spectra of many astrophysical sources

Send offprint requests to: I.V. Moskalenko

exhibit an annihilation feature, while their continuum indi-
cates the presence of mid-relativistic thermal plasmas with
kT <∼ 200 − 300 keV. Spectra of γ-ray bursts and Crab pulsar
show emission features in the vicinity of 400–500 keV (Mazets
et al. 1982; Parlier et al. 1990), which are generally believed
to be red-shifted annihilation lines. Recent observations with
SIGMA telescope have exhibited annihilation features in the
vicinity of ∼ 500 keV in spectra of two Galactic black hole
candidates, 1E 1740.7–2942 (Bouchet et al. 1991; Sunyaev et
al. 1991; Churazov et al. 1993; Cordier et al. 1993) and Nova
Muscae (Goldwurm et al. 1992; Sunyaev et al. 1992). A narrow
annihilation line has been observed from solar flares (Murphy
et al. 1990) and from the direction of the Galactic center (Lev-
enthal et al. 1978).

The region of the Galactic center contains several sources
which demonstrate their activity at various wavelengths and par-
ticularly above several hundred keV (e.g., see Churazov et al.
1994). Escape of positrons from such a source or several sources
into the interstellar medium, where they slow down and annihi-
late, can account for the 511 keV narrow line observed from this
direction. The 1E 1740.7–2942 object has been proposed as the
most likely candidate to be responsible for this variable source
of positrons (Ramaty et al. 1992). This would only require that
a small fraction of e+e−-pairs, which is generally believed to be
produced in the hot inner region of an accretion disc, escapes
into surrounding space (Meirelles & Liang 1993). Nova Muscae
shows a spectrum which is consistent with Comptonization by
a thermal plasma kTe <∼ 100 keV in its hard X-ray part, while a
relatively narrow annihilation line observed by SIGMA during
the X-ray flare on 20–21 January, 1991 implies that positrons
annihilate in a much colder medium (Gilfanov et al. 1991; Gold-
wurm et al. 1992).

Numerous studies of positron propagation and annihilation
in cold interstellar gas (e.g., see Guessoum et al. 1991 and ref-
erences therein) have been inspired by observations of a narrow
511 keV line emission from the Galactic center region. Rela-
tivistic pair plasmas have been a matter of investigation during a
decade (for a review, see Svensson 1990). In all thermal models,
however, particles are assumed to be Maxwellian a priori and
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very often one only pays attention to the relevant relaxation time
scales. Herewith, the annihilation line shape, the main feature
which can be actually measured, is strongly influenced by the
real particle distribution. The latter can differ from a Maxwellian
under certain circumstances, such as particle injection, escape,
and annihilation. It is thus of astrophysical interest to study par-
ticle distributions in various physical conditions.

In this paper we use a Fokker-Planck approach to examine
the effects of annihilation, particle escape and injection on the
form of a steady-state positron distribution in thermal hydrogen
plasmas with kT < mec

2. Pairs are assumed to be produced in
the bulk of the plasma due to γγ-, γ-particle, or particle-particle
interactions, or to be permanently injected into the plasma vol-
ume by an external source. We don’t touch here upon the cause
of particle escape, it could be of diffusive origin or due to the
radiation pressure (e.g., see Kovner 1984). Since the plasma
cloud serves as a thermostat, it is therefore reasonable, as the
first step into the problem, to consider that the electron distribu-
tion approaches Maxwellian. The positron fraction considered
is small enough, so it does not affect the electron distribution.

Suggesting that the features observed by SIGMA in >∼ 300
keV region are due to the electron-positron annihilation in ther-
mal plasma, we apply the obtained results to Nova Muscae and
the 1E 1740.7–2942 source in order to get the parameters of
the emitting regions where the annihilation features have been
observed.

In Sect. 2 the Fokker-Planck treatment is considered and
we present a method to obtain a steady-state solution. The reac-
tion rate formalism is introduced in Sect. 3. The expressions for
energy changes and losses due to Coulomb scattering, brems-
strahlung and Comptonization are given in Sect. 4–6. Electron-
positron annihilation is considered in Sect. 7. The results of
calculation are discussed in Sect. 8. In the last section (Sect. 9)
we discuss the physical parameters of the emitting regions in
Nova Muscae and the 1E 1740.7–2942 source. Throughout the
paper units h̄ = c = me = 1 are used.

2. The Fokker-Planck equation: positron spectrum

Assuming the isotropy of the positron energy distribution func-
tion f (γ), the steady-state Fokker-Planck equation takes the
form

d

dγ

{
d

dγ
[D(γ)f (γ)]− P (γ)f (γ)

}
−[A(γ) + E(γ)]f (γ) + S(γ) = 0, (1)

where
∫
f (γ) dγ = 1, γ is the positron Lorentz factor, P (γ) ≡

dγ/dt is the dynamical friction (energy loss rate), D(γ) ≡
d(∆γ)2/dt is the energy dispersion rate, A(γ) and E(γ) are
the annihilation and the particle escape rates, respectively, and
S(γ) is the positron injection term.

In the steady-state regime, without sources and sinks, the ki-
netic coefficients obey the equation (Lifshitz & Pitaevskii 1979)

which results from the absence of the flux density in the energy
space,

D′(γ)f1(γ) + D(γ)f ′1(γ) = P (γ)f1(γ), (2)

where f1(γ) is to be a Maxwellian distribution f1(γ) ∼ γ(γ2 −
1)1/2e−γ/kT (kT is the dimensionless plasma temperature).
This equation fixes a relation between the coefficients

D(γ) =
1

f1(γ)

∫ γ

1
dγ′ f1(γ′)P (γ′). (3)

We emphasize that the coefficients of the Fokker-Planck
equation have an additive property. They represent the sum of
coefficients for various processes which have to be evaluated
separately.

Although the plasma cloud serves as a thermostat with true
Maxwellian distribution, annihilation and sinks distort the dis-
tribution f1(γ). We are thus looking for the solution of Eq. (1)
in the form f (γ) = f1(γ)g(γ), which gives an equation for the
unknown function g(γ) (Moskalenko 1995)

g′(γ) =
1

D(γ)f1(γ)

{∫ γ

1
(A + E)f dγ′

−
∫ ∞

1
(A + E)f dγ′ ×

∫ γ

1
S̃ dγ′

}
, (4)

Eliminating g(γ) in favour of f (γ) yields the integro-
differential equation for the distorted function

f ′(γ)− f (γ)

{
1
γ

+
γ

γ2 − 1
− 1
kT

}
=

1
D(γ)

(5)

×
{∫ γ

1
(A + E)f dγ′ −

∫ ∞

1
(A + E)f dγ′ ×

∫ γ

1
S̃ dγ′

}
,

while [Df ]′ − Pf = 0 at γ = 1 was assumed (cf. Eq. (2)). The
last term in Eq. (5) follows simply from conservation of the total
number of positrons∫ ∞

1
[A(γ) + E(γ)]f (γ) dγ =

∫ ∞

1
S(γ) dγ, (6)

which is always fulfilled if the source function has the form
S(γ) = S̃(γ)× ∫∞

1 (A + E)f dγ′ and
∫∞

1 S̃ dγ = 1. A regular
singular point γ = 1 in Eq. (5) does not lead to any singularity of
the solution, which is Maxwellian-like at the low-energy part.
Equation (6) gives also an idea of physical meaning of term
[E(γ)f (γ)], that is the number of positrons with Lorentz factor
γ escaping from the plasma volume per 1 sec. The approach can
be easily generalized to include inelastic processes, stochastic
acceleration etc.

Eq. (4) or (5) can be resolved numerically with an algorithm
which reduces it to a first-order differential equation. Let fi(γ)
is the solution obtained after the i-th iteration, then the equation

f ′i+1(γ)− fi+1(γ)

{
1
γ

+
γ

γ2 − 1
− 1
kT

}
=

1
D(γ)
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×
{∫ γ

1
(A + E)fi dγ

′ −
∫ ∞

1
(A + E)fi dγ

′ ×
∫ γ

1
S̃ dγ′

}
, (7)

with the initial condition1 fi+1(1) = 0 allows us to get the next
approximation fi+1(γ) of the solution. For Eq. (4), the condi-
tion gi+1(1) = gi(1) could be taken. To start the iteration pro-
cedure one can use the Maxwell-Boltzmann distribution f1(γ),
although, in some cases, when a solution of Eq. (7) deviates
strongly from Maxwellian, that causes a deviation in normal-
ization during first iterations. Since a solution of Eq. (7) fn(γ)
multiplied by a constant would be also a solution, it has to be nor-
malized in the end of iteration process. This algorithm converges
quickly and gives a good approximation of the solution already
after several iterations. The actual signature of the convergence
could be an equality

∫∞
1 (A + E)fi−1 dγ

′ =
∫∞

1 (A + E)fi dγ′.
The combination of functions (afi + (1 − a)fi−1), where a =
const <∼ 1, on the place of fi in the right side allows sometimes
to get a convergence faster.

3. Reaction rate formalism

Below we describe a formalism, which further allows us to cal-
culate the annihilation rate, energy losses and energy dispersion
rate due to Coulomb scattering, bremsstrahlung, and Comp-
tonization.

The relativistic reaction rate R for two interacting distribu-
tions of particles is given by

R =
1

(1 + δ12)

∫
dn1

∫
dn2 σ(β1,β2)(1− β1 · β2)βr, (8)

whereσ(β1,β2) is the cross section of a reaction, dni andβi are
correspondingly the differential number density and velocity of
particles of type i in the laboratory system (LS),βr is the relative
velocity of the particles, the factor (1+δ12)−1 corrects for double
counting if the interacting particles are identical.

We consider energetic particles which interact with particles
of a thermal gas. Let masses of both types of particles be equal
(mi = 1). For isotropic distributions, Eq. (8) can be reduced
to the triple integral over particle momenta, pi = βiγi, and the
relative angle, cos θ = p1 · p2/p1p2,

R =
n1n2

2(1 + δ12)

∫ ∞

0
dp1

p2
1

γ1
f1(p1)

∫ ∞

0
dp2

p2
2

γ2
f2(p2)

×
∫ 1

−1
d(cos θ) γrβrσ(γr), (9)

where ni is the number density of particles of type i
in the LS, fi(pi) are the momentum distribution functions
(
∫∞

0 dpi p
2
ifi(pi) = 1),

γr = (1− β2
r)−1/2 = γ1γ2(1− β1β2 cos θ) (10)

is the relative Lorentz factor of two colliding particles (invari-
ant). Putting the relativistic Maxwell-Boltzmann distribution for

1 which follows from suggestion f (γ) = f1(γ)g(γ), where f1(γ) is a
Maxwellian.

the electron gas (pay attention to the normalization) together
with the monoenergetic distribution for the beamed particles,

f1(p1) =
e−γ1/kT

kTK2(1/kT )
, (11)

f2(p2) =
1
p2

2

δ(p2 − p), (12)

into Eq. (9) yields

R(γ) =
n1n2

2(1 + δ12)kTK2(1/kT )γ

×
∫ 1

−1
d(cos θ)

∫ ∞

0
dp1

p2
1

γ1
γrβrσ(γr)e−γ1/kT , (13)

where Kj is the j-order modified Bessel function.
Using Eq. (10) to eliminate cos θ in favor of pr = γrβr and

changing variables from p1 to γ1 one can find

R(γ) =
n1n2

2(1 + δ12)kTK2(1/kT )γ2β

×
∫ ∞

0
dpr

∫ γ+
1

γ−1

dγ1
p2
r

γr
σ(pr)e−γ1/kT , (14)

whereγ±1 = γγr(1±ββr). After integrating overγ1, the reaction
rate can be exhibited in the form (Dermer 1985)

R(γ) =
n1n2

(1 + δ12)K2(1/kT )γ2β

×
∫ ∞

0
dpr

p2
r

γr
σ(pr) sinh(γγrββr/kT )e−γγr/kT . (15)

Another form of the reaction rate for interacting isotropic
distributions of particles (Eqs. [11], [12]) was found useful for
some purposes (Dermer 1984)

R(γ) =
n1n2e

γ/kT

2(1 + δ12)kTK2(1/kT )γ2β

∫ ∞

1
dγr

×
∫ γ+

c

γ−c
dγc γcγrβrσ(γr)

√
2(γr + 1)e

−γc
√

2(γr+1)
kT , (16)

where γc = γ1+γ2√
2(γr+1)

is the Lorentz factor of the center-of-mass

system (CMS), and γ±c = γ(1+γr±βγrβr)√
2(γr+1)

.

If we are interested in energy losses suffered by the energetic
particles in an isotropic gas, it is necessary to weight the cross
section in Eq. (14) or (16) by the average LS energy change
per collision 〈∆γ〉. The concrete form for 〈∆γ〉 depends on
the studied process. Hereafter we will consider the reaction rate
and energy losses per one positron in the unit volume (n2 = 1),
while ne ≡ n1 will denote the electron number density.
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4. Coulomb collisions

Speaking about the Coulomb scattering one usually implies the
lowest order approximation, which is called Møller scattering
when referred to identical particles e±e±, and Bhabha scattering
when referred to distinct particles e+e−. The effect of brems-
strahlung in ee-collisions is strictly not separable from that of
scattering, however, it is convenient and generally accepted to
treat them separately. Expressions for Coulomb energy losses
and dispersion have been obtained by Dermer (1985) and Der-
mer & Liang (1989). Here we describe briefly their results for
the self-consistency of consideration.

The average LS energy change during a collision is (asterisk
denotes CMS variables)

〈∆γ〉 =
1

σ∗Coul(γr)

∫
d3p′∗

d3σ∗Coul
dp′∗3

∆γ, (17)

where (d3σ∗Coul/dp
′∗3) is the differential cross section, d3p′∗ =

p′∗2dp′∗d(cosψ′∗)dφ′∗, ψ′∗ and φ′∗ are the polar and azimuthal
angles, respectively. The LS energy change expressed in these
variables is

∆γ = γc(γ
′∗ − γ∗) + βcγc[(p

′∗ cosψ′∗ − p∗) cosω∗

−p′∗ sinψ′∗cosφ′∗ sinω∗], (18)

where βc is the CMS velocity,

γ∗ =
√

(γr + 1)/2,
p∗ =

√
(γr − 1)/2,

(19)

are the Lorentz factor and momentum of a particle in the CMS
prior to scattering, γ′∗ and p′∗ are those after scattering, and ω
is a kinematic angle

cosω∗ = (β∗ · βc)/β∗βc,
sinω∗ = β1β2 sin θ/γrβrγcβc.

(20)

Energy losses of a particle due to elastic Coulomb scattering
are given by Eq. (16) with the cross section weighted by 〈∆γ〉.
Using azimuthal symmetry of the cross section, Dermer (1985)
obtains

dγ

dt
=

nee
γ/kT

2(1 + δ12)kTK2(1/kT )γ2β

∫ ∞

1
dγr βrγr

√
2(γr + 1)

×
∫

dγ′∗
∫

d(cosψ′∗)
d2σ∗Coul

dγ′∗d(cosψ′∗)

×
∫ γ+

c

γ−c
dγc e

−γc
√

2(γr+1)
kT

{
γc(γ

′∗ − γ∗)

+(
p′∗

p∗
cosψ′∗ − 1)(γ − γcγ

∗)

}
, (21)

since cosω∗ = (γ − γcγ
∗)/γcβcp∗. In the case of elastic scat-

tering γ∗ = γ′∗ and p∗ = p′∗, that gives

dγ

dt
=

ne
K2(1/kT )γ2β

∫ ∞

1
dγr βrγre

−γγr/kTY

×
{(

γp∗2 +
γ∗kT√
2(γr + 1)

)
sinh(γγrββr/kT )

−γβp∗γ∗ cosh(γγrββr/kT )

}
, (22)

where

Y =
∫ ψ′∗max

ψ′∗
min

d(cosψ′∗) (1− cosψ′∗)
dσ∗Coul

d(cosψ′∗)
. (23)

The value of ψ′∗max can be assigned from geometrical consid-
eration: π for distinct particles and π/2 for identical particles.
The minimum scattering angle ψ′∗min can be related to the ex-
citation of a plasmon of energy ωp. The correction for double
counting in the case of identical particles appears now as the
above condition for ψ′∗max.

Integration of Eq. (23) with Møller (e±e±) and Bhabha
(e±e∓) scattering cross sections (Jauch & Rohrlich 1976) gives

YMø =
2πr2

e

γ∗2(γ∗2 − 1)2

{
1
2

(2γ∗2 − 1)2

(
ln Λ + ln

√
2 +

1
2

)

−
(

2γ∗4 − γ∗2 − 1
4

)
ln 2 +

1
8

(γ∗2 − 1)2

}
, (24)

YBh =
2πr2

e

γ∗2(γ∗2 − 1)2

{
1
2

(2γ∗2 − 1)2 ln Λ

−β
∗2

24
(22γ∗4 + 14γ∗2 − β∗2 + 6)

}
. (25)

The term ln Λ = ln
√

1−cosψ′∗max

1−cosψ′∗
min

appearing in Eqs. (24)–(25)

is the Coulomb logarithm. It is a slowly varying function of
γ∗, and often can be approximated by a constant. In the Born
regime for the cold plasma limit, the Coulomb logarithm is

given by Dermer (1985) ln Λe±e± = ln
(
mec

2

h̄ωp
(1− 1

γ )
√
γ + 1

)
,

ln Λe±e∓ = ln Λe±e± + ln
√

2. Where the plasma frequency
ωp can be obtained from the usual expression by replacing the
electron rest mass with an average inertia per gas particle 〈γ〉kT
(Gould 1981), ω2

p = 4πrec2ne/〈γ〉kT .
Substitution of the Rutherford cross section yields the cold

plasma limit

dγ

dt
= −4πr2

ene
β

ln Λ. (26)

The energy dispersion coefficients d(∆γ)2/dt can be ob-
tained from Eq. (3). Another way is to square Eq. (18) and to
follow the above-described method. For Møller scattering of an
electron by a thermal electron distribution the correct form of
the coefficient has been obtained by Dermer & Liang (1989)[
d(∆γ)2

dt

]
Mø

=
nee

γ/kT

2kTK2(1/kT )γ2β

∫ ∞

1
dγr

(γ2
r − 1)
γ∗β∗
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×
{
η0

(
I1γ

2 − I2

2
(γ2 + γ∗2β∗2)

)
−η1γγ

∗ (2I1 − I2
)

+ η2

(
I1γ

∗2 − I2

2

)}
, (27)

where

I1 =
2πr2

e

γ∗2(γ∗2 − 1)2

[
1
2

(2γ∗2 − 1)2 + (1− 2 ln 2)

×
(

2γ∗4 − γ∗2 − 1
4

)
+

1
12

(γ∗2 − 1)2

]
,

I2 =
2πr2

e

γ∗2(γ∗2 − 1)2

[
(2γ∗2 − 1)2(ln Λ + ln

√
2)

−
(

2γ∗4 − γ∗2 − 1
4

)
+

1
6

(γ∗2 − 1)2

]
,

ηi =
∫ γ+

c

γ−c
dγc γ

i
ce

−γc
√

2(γr+1)
kT .

5. Bremsstrahlung

Electron-positron bremsstrahlung is a well-known QED pro-
cess, but the calculation of its fully differential cross section
for the photon production is very laborious, the resulting cross
section formula is extremely lengthy and it was obtained quite
recently (Haug 1985a,b). In e+e−-collisions both particles ra-
diate, and that brings some uncertainties in calculation of the
particle energy loss, increasing particularly as the positron en-
ergy closes in the electron gas temperature. The exact energy
loss rate can be obtained using the cross section differential in
the energy of the outgoing positrons, but no expression for this
quantity is available. As it will be shown, the bremsstrahlung
energy loss is small in comparison with Coulomb and Compton
scattering losses, and that allows us to approximate it by the ra-
diated energy rate. We shall, hereafter, speak about the particle
energy loss taking into account the above remark.

An average energy loss through bremsstrahlung is given by

〈∆γ〉 = − 1
σb(γr)

∫
dk∗

∫
dΩ∗ k

d3σ∗b
dk∗dΩ∗

, (28)

where (d3σ∗b/dk
∗dΩ∗) is the bremsstrahlung differential cross

section in the CMS, and k is the LS energy of the radiated
photon. It can be expressed as

〈∆γ〉 =
γcQcm

σb(γr)
, (29)

where Qcm(γr) =
∫
dk∗ k∗(dσ∗b/dk

∗). For e+e− bremsstrah-
lung Haug (1985c) gives an approximation

Qcm = (30)

16
3
αr2

e


2 (1.096− 0.523p∗ + 0.1436p∗2

+1.365p∗3 − 0.532p∗4), γ∗ <∼ 8/5;

3 (γ∗ ln(γ∗ + p∗)− γ∗/6− 0.726
+1.575γ∗−1 − 0.796γ∗−2), γ∗ >∼ 8/5,

where α is the fine structure constant, and p∗, γ∗ are the CMS
variables given by Eq. (19). The same for e±e± bremsstrahlung
is (Haug 1975)

Qcm ' 8αr2
e

p∗2

γ∗

{
1− 4p∗

3γ∗
+

2
3

(
2 +

p∗2

γ∗2

)
ln(γ∗ + p∗)

}
.(31)

Then, starting from Eq. (14) and taking into account Eq. (29)
we get

dγ

dt
=

ne√
2(1 + δ12)K2(1/kT )γ2β

×
∫ ∞

0
dpr βr(γr − 1)1/2Qcm(γr)e−γγr/kT

×{γβγrβr cosh(γβγrβr/kT )

−(kT + γ + γγr) sinh(γβγrβr/kT )}. (32)

In a hydrogen plasma the moving positron suffers energy
losses due to e+e−- and ep-bremsstrahlung. For equal e− and p
densities, e+e− bremsstrahlung gives the dominant contribution
to the energy loss in the whole energy range. At the high energy
limit e+e−-bremsstrahlung energy loss becomes equal to that of
ep and exactly twice the ee energy loss; herewith in the Born ap-
proximation e+p and e−p cases are identical (Jauch & Rohrlich,
1976). An expression for energy loss due to ep-bremsstrahlung
was obtained by Stickforth (1961)

dγ

dt
= (33)

−2
3
neαr

2
e


8γβ[1− (γ − 1)/4 + 0.44935(γ − 1)2

−0.16577(γ − 1)3], γ <∼ 2;

β−1[6γ ln(2γ)− 2γ − 0.2900], γ >∼ 2.

6. Compton scattering

The presence of photons in a thermal plasma leads to essen-
tial energy losses due to Compton scattering. Thomson limit
remains a good approximation while the photon energy is � 1
(the rest mass of the electron) and the electron Lorentz factor is
not too high. As the photon energy reaches∼ 0.1 the difference
from the classical limit becomes large, the principal effect is
to reduce the cross section from its classical value. Numerous
X-ray experiments show that the actual temperature of plas-
mas in astrophysical sources (far) exceeds 0.05 and the particle
Lorentz factor exceeds often few units, that is why we consider
the Klein-Nishina cross section.

The particle energy loss rate due to Compton scattering is
given by

dγ

dt
=

1
2γ2β

∫ ∞

0
dω fγ(ω)

∫ k+

k−
dk kσKN (k)〈∆γ〉, (34)

where γ, β are the LS particle Lorentz factor and speed prior
to scattering, ω is the initial photon energy in the LS, the back-
ground photon distribution fγ(ω) is normalized on the photon
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number density nγ =
∫
dω ω2fγ(ω) or on the energy density as

Uph =
∫
ω3fγ(ω) dω, k± = ωγ(1± β), and an average particle

energy change due to the scattering is

〈∆γ〉 =
1

σKN

∫
dk′

∫
d(cos θ′)

d2σKN

dk′d(cos θ′)
∆γ. (35)

The Klein-Nishina differential cross section in the positron-rest-
system (PRS) is expressed in terms of initialk and finalk′ photon
energies (Jauch & Rohrlich 1976),

dσKN

d(cos θ′)
= πr2

e

(
k′

k

)2(
k

k′
+
k′

k
− sin2 θ′

)
, (36)

k′

k
=

1
1 + k(1− cos θ′)

,

where θ′ is the photon scattering angle in this system. The par-
ticle energy change in the LS due to the recoil effect is

∆γ = ω − k′γ(1 + β cos ρ′ cos θ′), (37)

where ρ′ is the angle between the incoming photon and positron
velocity vectors in the PRS, β cos ρ′ = (ω/γk)− 1 .

After the integration one can obtain

dγ

dt
=

πr2
e

2γ2β

∫ ∞

0
dω fγ(ω)[S(γ, ω, k+)− S(γ, ω, k−)], (38)

where

S(γ, ω, k) = ω

{(
k +

31
6

+
5
k

+
3

2k2

)
ln(2k + 1)

−11
6
k − 3

k
+

1
12(2k + 1)

+
1

12(2k + 1)2
+ Li2(−2k)

}

−γ
{(

k + 6 +
3
k

)
ln(2k + 1)− 11

6
k

+
1

4(2k + 1)
− 1

12(2k + 1)2
+ 2Li2(−2k)

}
, (39)

and Li2 is the dilogarithm

Li2(−2k) = −
∫ −2k

0
ln(1− x)

dx

x
=


∑∞

i=1(−2k)i/i2, k ≤ 0.2;

−1.6449341 + 1
2 ln2(2k + 1)

− ln(2k + 1) ln(2k) +
∑∞

i=1 i
−2(2k + 1)−i, k ≥ 0.2.

Formulas (38)–(39) give exactly the same result as Jones’
(1965) Eq. (13). The delta-function approximation of the pho-
ton distribution fγ(ω) ∼ δ(ω − ω0)/ω2 can sometimes be used
for evaluation of the integral (38). We have found that in some
cases it shows a good agreement with exact calculations, e.g.
for the Planck’s distribution with ω0 = 2.7kT (see Fig. 2).

The Thomson limit of the Compton scattering can be ob-
tained similarly by equating k = k′ in Eq. (36)(
dγ

dt

)
T

= −32
9
πr2

eUphγ
2β2. (40)

For the energy dispersion rate one can get[
d(∆γ)2

dt

]
T

=
56
45
πr2

e〈ω2〉γ2β2(6γ2β2 + 1), (41)

where 〈ω2〉 =
∫
ω4fγ(ω) dω.

7. Annihilation rate and spectrum

The annihilation rate A(γ) for monoenergetic positrons in
Maxwell-Boltzmann electron gas can be directly obtained from
Eq. (15) by substitution of the annihilation cross section (Jauch
& Rohrlich 1976)

σa(γr) =
πr2

e

γrβ2
r(γr + 1)

{
(γr + 4 +

1
γr

)

× ln(γr +
√
γ2
r − 1)− βr(γr + 3)

}
. (42)

The spectrum of photons dΓ/dν, which are emitted in the
annihilation is given by

dΓ
dν

= n+n−
∫

f+(γ+) dγ+

∫
f−(γ−)H(ν, γ+, γ−) dγ−, (43)

where ν is the dimensionless photon energy, f±(γ±) are the
arbitrary isotropic particle distributions

∫
f±dγ± = 1, n± and

γ± are the e± number densities and Lorentz factors. An ana-
lytical expression for the angle-averaged emissivity per pair of
particles,

H(ν, γ+, γ−) =
∫

d cos θ∗
γ∗2β∗

γ+γ−
dσ

dν
(ν, γ+, γ−, cos θ∗), (44)

was obtained by Svensson (1982), here dσ
dν is the differential

cross section for emission of a photon with LS energy ν.

8. Calculations and analysis

The rates obtained in the paper were integrated over the
Maxwellian distribution in order to compare with well-known
results for the thermal plasma. The annihilation rate was
tested with annihilation rate of an e+e− plasma (Ramaty &
Mészáros 1981), bremsstrahlung energy losses were compared
with e+e−-, ee-, and ep-bremsstrahlung luminosities of ther-
mal plasmas (Haug 1985c). Two more tests on Coulomb en-
ergy losses and bremsstrahlung were carried out with calcu-
lations by Dermer & Liang (1989). An excellent agreement
was found. Compton energy loss Eq. (38)–(39) coincides with
the Thomson limit as ω → 0. Besides, we have found that
the formulas obtained can be also successfully applied for the
calculation of the bremsstrahlung luminosity and annihilation
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Fig. 1. Shown are the calculated annihilation rate (A), energy losses due to bremsstrahlung (e+e−, ee, and ep) as well as Coulomb energy losses
(C) and dispersion coefficients (D) in thermal hydrogen plasmas. All values are provided dimensionless, in units neπr2

e. Low energy particles
gain energy in Coulomb scattering with plasma particles that appears as a sign change and shown by bold dotted lines.

rate of the thermal plasma by replacing the positron Lorentz
factor with the average one over the Maxwellian distribution
〈γ〉kT = 3kT + [K1(1/kT )/K2(1/kT )].

The relevant energy loss rates (−dγ/dt) and annihilation
rate per one positron are shown in Fig. 1 and 2. All values are
provided dimensionless, in units neπr2

e, the Coulomb logarithm
was taken a constant ln Λ = 20. Møller and Bhabha energy
losses show negligible difference and dominate over the others
except Compton scattering, which is quite effective and can
prevail at large Lorentz factors of positrons (electrons). Low
energy particles gain energy in Coulomb scattering with thermal
electrons that appears as the sign change ofdγ/dt. Energy losses
due to bremsstrahlung are negligible in comparison with others.
Annihilation rate is small in comparison with the relaxation
rate, so that most of positrons annihilate after their distribution
approaches the steady-state one.

The energy losses due to Compton scattering (Fig. 2) have
been calculated in the Thomson limit Eq. (40) and in the Klein-
Nishina regime for a Planckian spectrum fγ(ω) = (eω/kT −
1)−1/2.404(kT )3, and the δ-function approximation. The en-
ergy loss rates due to the Comptonization on Planck’s photons
are shown for two photon temperatures, the δ-function approx-
imation of Planck’s distribution with ω0 = 2.7kT gives similar
results. For the clear comparison with Fig. 1 the photon number
density have been taken equal to that of the plasma electrons

nγ = ne easily generalizing for an arbitrary nγ by trivial ver-
tical shift of the curves. For the coherence, in all calculations
the energy density of photons Uph was taken equal to that of
Planck’s distribution ≈ 2.7kTnγ . Shown also is the dispersion
coefficient calculated in the Thomson limit Eq. (41). The radi-
ation can provide some heating for the cold particles similar to
that in the Coulomb scattering. Very low-energy particles gain
energy due to Comptonization that appears as a sign change of
the energy losses (see the inset in Fig. 2). Clearly, the effect
results from using the Klein-Nishina cross section.

At small positron Lorentz factors, the Coulomb energy
losses dominate the losses due to Comptonization over the vari-
ety of photon temperatures and densities (cf. Fig. 1 and 2). Qual-
itatively it means that high photon density leads to the cooling
of plasma preferentially through high-energy particles. Here-
with, the Coulomb scattering mixes particles so that the plasma
remains nearly Maxwellian. Therefore the energy losses due to
Comptonization would be only important for the high-energy
tail of the particle distribution, which becomes narrower. The
precise shape of the distribution would be driven by the balance
of income and outcome energy fluxes.

Positrons could be injected into the hydrogen plasma vol-
ume by an external source or produced in the bulk of the plasma.
In the latter case the form of the source function is governed
by the nature of the processes involved. Electron-positron pair
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Fig. 3. The distorted positron distribution f (γ) for an electron temperature kT = 0.1 with and without positron escape E(γ) = 0, 10, 100. The
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π (solid lines). A Maxwell-Boltzmann distribution (MB) is also shown.

production in ep-collisions becomes possible when the elec-
tron interacting with a stationary proton has the Lorentz factor
exceeding 3, for ee-collisions one should exceed 7 when one
interacting particle is at rest. If the pair is to be produced in
two-photon collisions, the photon energies, ωi, and the relative
angle, θ, must satisfy the condition ω1ω2 > 2/(1− cos θ). Low
plasma temperature is consistent with a small positron fraction
in the plasma since the positrons could be produced by the rel-
atively small number of head on collisions of energetic photons
and/or electrons from the tail of Maxwellian distribution.

If the particle production is not balanced by annihilation
it could lead to escape of e+e−-plasma, since the gravitation
near a compact object can’t prevent pairs from escaping. Two
independent mechanisms, at least, diffusion and the radiation
pressure result in escaping of particles from the plasma volume.
We, therefore, explore these factors separately. If particles es-

cape due to the radiation pressure, it is natural to suppose that
the escape probability E(γ) is a weak function of the particle
Lorentz factor, we thus put it a constant. In the case the escape
is of diffusive origin, the diffusion coefficient is a function of
particle speed D ∼ β. We thus consider two functional forms
for the escape probabilityE ∼ β, andE ∼ √β which simulates
the case when both mechanisms operate simultaneously.

Calculations of the distorted function f (γ) have been made
(Fig. 3) for the source function in the form of monoenergetic
distribution S̃(γ) = δ(γ − γ0), power-law S̃(γ) = 2/γ3, and
Gaussian S̃(γ) = exp[−(γ−4)2]/

√
π. The escape rate was taken

energy-independentE = 0, 10, and 100 in units neπr2
e, which is

negligible, medium and very high in comparison with the time
scale of the Coulomb energy losses (cf. Fig. 1). It demonstrates
an effect of blowing away of (unbound) electron-positron pairs
by radiation pressure.
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E(γ) = 0, 10, 100. The source function of positrons was taken a Gaussian ∼ exp[−(γ − 4)2]. The spectra are provided dimensionless, in units
n−n+πr

2
e, where n± is the e± number density and re is the classical electron radius.

The behavior of the solution f (γ) depending on the injec-
tion function and escape rate is quite clear from the figure. One
can show that the right side of the Eq. (4) and (5) is negligi-
ble at γ → 1, the solution is therefore Maxwellian-like. Be-
ginning from some point, the term

∫ γ
1 (A + E)f dγ′ becomes

non-negligible that leads to some increasing of the derivative
g′(γ) and deviation of the solution from Maxwellian. Thus, a
bump is forming. At some Lorentz factor the last term in the
right side of Eqs. (4) and (5) is switching on, which leads to
some decreasing of the derivative or could even change it to
a negative value. At large Lorentz factors the right side of the
equations again approaches zero (see Eq. [6]). Generally, if the
energy of injected particles essentially exceeds the average one
of plasma particles it leads to an extended tail, while the correct
normalization of the whole solution thus requires some deficit
at low energies.

Typical spectra of photons from annihilation of these
positrons with Maxwellian electrons are shown in Fig. 4 for
electron temperatures kT = 0.01, and 0.1. It is seen that
as plasma temperature grows the annihilation line widens, its
height decreases and distortions of its shape become relatively
more intensive.

Another case is shown in Fig. 5. The distorted functions
were calculated for electron temperatures kT = 0.1, 0.3, and
0.5 while the escape probability in all cases was taken the same
E = 50β (in units neπr2

e). The actual values of the escape rate
in these cases could be inferred from the value of the integral∫∞

1 (A +E)f dγ′, which is equal to≈ 24,≈ 35, and≈ 41, cor-
respondingly. Particle injection was taken monoenergetic with
energy equal to the average energy of plasma electrons. In all
cases, the escape leads to some deficit of energetic particles
in the tail of distribution, while the particle injection appears
as a bump. Although the distributions of positrons differ from
Maxwellians, their annihilation with thermal electrons does not
lead to large distortions of the annihilation line form. This latter
is very similar to the line from annihilation of two Maxwellian
distributions.

Although only few cases have been discussed, the performed
calculations have shown that the functional dependence of the
escape rate is not very important. In all three casesE = const,∼
β, and∼ √β we obtained similar results for the same injection
function, the difference appears only at very low temperatures
kT <∼ 0.05. It is quite clear, since β increases from 0 to ≈ 1
in a narrow region γ = 1 − 1.4 remaining further a constant.
The particle distribution actually depends on the value

∫∞
1 (A+

E)f dγ, energy of the injected particles and their distribution
(cf. Figs. 3 and 5). In absence of the particle injection, the escape
of particles operates as an additional mechanism for the plasma
cooling.

9. Nova Muscae and 1E 1740.7–2942

Recent observations with SIGMA telescope have revealed anni-
hilation features in the vicinity of ∼ 500 keV in spectra of two
Galactic black hole candidates, 1E 1740.7–2942 (hereafter the
1E source; Bouchet et al. 1991; Sunyaev et al. 1991; Churazov et
al. 1993; Cordier et al. 1993), and Nova Muscae (Sunyaev et al.
1992; Goldwurm et al. 1992). During all periods of observation
the hard X-ray emission, 35–300 keV, was found to be consis-
tent with the same law. Observations of Nova Muscae after the
X-ray flare (January 9, 1991) are well fitted by a power law of
index 2.4 − 2.5 or by Sunyaev-Titarchuk (1980) model with
kT ≈ 55 − 75 keV and τ ≈ 0.4 − 0.5 in the disc geometry,
the spectrum of the 1E source is well described by Sunyaev-
Titarchuk model with kT ≈ 35 − 60 keV and τ ≈ 1.1 − 1.9.
Meanwhile soft γ-ray emission of these sources seems to be
highly variable.

During the last 13 hr of a 21 hr observation on January 20–
21, 1991, a clear emission feature around 500 keV was found
in the spectrum of Nova Muscae (Fig. 6), with a line flux of
≈ 6×10−3 photons cm−2 s−1, and an intrinsic line width<∼ 58
keV (Sunyaev et al. 1992; Goldwurm et al. 1992). Since the
first 8 hr of the observation did not give a positive detection, the
inferred rise time is equal to several hours. The next observation,
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Fig. 5. The distorted positron distribution f (γ) for values of electron temperature kT = 0.1, 0.3, and 0.5 (left panel). The positron escape rate was
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held on February 1–2, did not show this feature restricting the
lifetime to <∼ 10 days.

The Galactic center region was intensively monitored by
SIGMA telescope since 1990. Three times during these years a
broad excess was observed in the 200–500 keV region (Fig. 6).

In an observation performed between 1990 October 13
and 14, a spectacular unexpected feature was found in the 1E
emission spectrum, the corresponding flux was estimated at
(0.9 − 1.3) × 10−2 photons cm−2 s−1, with a line width of
180− 240 keV (Bouchet et al. 1991; Sunyaev et al. 1991). The
observations of this region performed two days before (on Oc-
tober 10–11), and a few hours after (October 14–15) did not
exhibit any spectral feature beyond 200 keV. The total duration
of this state is estimated between 18 and about 70 hr.

Seven October 1991 observations have shown an evident
excess at high energies, while the source was in a low state
(Churazov et al. 1993). The excess was observed during 19
days and was not so intensive as in October 1990, the average
flux was (1.9± 0.6)× 10−3 photons cm−2 s−1 in the 300–600
keV region.

The 1992 September 19–20 observational session (Sep.
19.42–20.58) showed a feature beyond 200 keV (Cordier et al.
1993), which resembles that of 1990 October 13–14. The line
flux was estimated as 4.28+2.70

−1.50× 10−3 photons cm−2 s−1. The
previous (Sep. 18.59–19.30) and the next (Sep. 22.57–23.14)
sessions did not show any evidence for emission in excess of
200 keV, restricting the lifetime of the state between 27 and
about 75 hr, while the rise time approaches probably several
hours.

The spectral features observed by SIGMA are, commonly
believed, related to electron-positron annihilation. Relatively
small line widths imply that the temperature of the emitting
region is quite low, kT ≈ 35 − 45 keV for 1E and 4–5 keV
for Nova Muscae. Since the hard X-ray spectra < 300 keV
showed no changes, most probably that electron-positron pairs
produced somewhere close to the central object were injected

into surrounding space where they cool and annihilate. Radia-
tion pressure of a near-Eddington source alone can accelerate
e+e−-plasma up to the bulk Lorentz factor of γ0 ∼ 2−5 (Kovner
1984), while Comptonization by the emergent radiation field
(Levich & Syunyaev 1971) could provide a mechanism for cool-
ing the pairs which further annihilate “in flight” (for a discussion
see also Gilfanov et al. [1991, 1994]). If there is enough mat-
ter around a source, then particles slow down due to Coulomb
energy losses and annihilate in the medium. We explore further
this last possibility by checking whether the inferred parame-
ters of the emitting region are consistent with those obtained
by other ways. We assume single and short particle ejection
on a timescale of hours. It seems reasonable: since the ejection
would probably impact on the whole spectrum, longer spectral
changes would be observable.

Suggesting that the energetic particles slow down due to
Coulomb scattering in the surrounding matter, one can estimate
its (electron) number density

n− ≈ γ0 − 1
πr2

ec∆i

(
dγ

dt

)−1

, (45)

where γ0 is the initial Lorentz factor of the plasma stream, c
is the light speed, and ∆i is the characteristic time scale of the
annihilation line appearance. The Coulomb energy loss rate in
a medium of kT ≤ 0.1 is (dγ/dt) ≈ 70 − 100 (see Fig. 1).
Taking a reasonable value for the bulk Lorentz factor, γ0 ≈ 3
(e.g., Kovner 1984), one can obtain estimations of the order
of magnitude as n− ≈ 2.2 × 107 cm−3 (∆i/2 days)−1 for the
1E source, and n− ≈ 1.5 × 108 cm−3 (∆i/5 hr)−1 for Nova
Muscae.

If the energetic particles were injected into the medium only
once, then the annihilation feature lifetime ∆d is directly con-
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Fig. 6. Energy spectra of the 1E source
(Bouchet et al. 1991; Churazov et al. 1993,
1994; Cordier et al. 1993) and Nova Muscae
(Goldwurm et al. 1992) observed by SIGMA
are shown together with fits of the authors.
For September 1992 flare shown is counts
s−1 keV−1. The dashed line in the upper left
panel shows the annihilation line shape for
Gaussian-like injection, ∼ exp[−(γ − 4)2],
of energetic particles into the thermal plasma
of kT = 35 keV for E/A = 20. The line is
shifted left to approach the data.

nected with annihilation rate as ∆−1
d ≈ πr2

ec n−A(γ). It yields
one more estimation of the number density in the emitting region

n− ≈ 1
πr2

ec∆dA(γ)
≈ 1.55× 109 cm−3

(
∆d

1 day

)−1

. (46)

Annihilation rate A(γ) is a weak function of γ (see Fig. 1) and
we can take it equal to a constant A = A(1) ≈ 1. Total duration
of the hard state is ∆d ≈ 18−70 hr for the 1E source and ∆d ≤
10 days for Nova Muscae, that gives n− ≈ (5−20)×108 cm−3

and n− ≈ 1.5 × 108 cm−3 (∆d/10 days)−1, correspondingly.
The values obtained from Eqs. (45)–(46) restrict the electron
number density in the volume where particles slow down and
annihilate.

Being equated Eqs. (45)–(46) give an obvious relation be-
tween the time scales

∆d

∆i
=

1
A(γ0 − 1)

dγ

dt
. (47)

Therefore, to be consistent with the annihilation lifetime the
annihilation rise time for the 1E source should be ∆i ≈ 1 − 2
hr. This is supported by the 1992 September 19–20 observation
when the annihilation rise time was restricted by a few hours.

The size of the emitting region λ could be estimated from
a simple relation n+λ

3 ∼ ∆dL500/2 if we assume the up-
per limit for the positron number density n+ ≤ n−. It gives
λ >∼ 1.34 × 1013 cm (∆d/1 day)2/3 ≈ (1.1 − 2.7) × 1013

cm for 1E and λ >∼ 1.3 × 1013 cm (∆d/10 days)2/3 for Nova
Muscae2, which are well inside of the upper limits λ < c∆i ≈
2.2× 1014 cm (∆i/2 hr) and ≤ 5× 1014 cm, correspondingly.

2 We took n+ ≤ n− ≈ 1.5× 108 cm−3 (∆d/10 days)−1.

From the above consideration follows that emitting regions in
both sources are optically thin and do not affect the Comp-
tonized spectra at < 300 keV nor the annihilation line form.
Experimental data and the estimated parameters are summa-
rized in Table 1.

The column density of the medium where injected particles
slow down and annihilate should exceed the value NH ∼ λn−,
which follows from previous estimations for λ and n−, viz.
2.1 × 1022 cm−2 (∆d/1 day)−1/3 <∼ NH < c∆in− ≈ 1.1 ×
1023 cm−2 for 1E, where we took into account Eq. (47), and
NH >∼ 2×1021 cm−2 (∆d/10 days)−1/3 for Nova Muscae. The
total column density of the gas cloud measured along the line
of sight, where the 1E source embedded, is high enough NH ≈
3× 1023 cm−2 (Bally & Leventhal 1991; Mirabel et al. 1991).
Note that recent ASCA measurements of the column density to
this source give a best fit value NH ≈ 8× 1022 cm−2 (Sheth et
al. 1996). For Nova Muscae the corresponding value is NH ∼
1021 cm−2 (Greiner et al. 1991), less or marginally close to the
obtained lower limit. If, on contrary, one suggests n+ � n− it
yields a condition NH � 2 × 1021 cm−2 (∆d/10 days)−1/3,
which considerably exceeds the measured value.

These estimations put us on to an idea that the 500 keV
emission observed from Nova Muscae was coming from e+e−-
plasma jet (n+ ≈ n−) rather than from particles injected in a gas
cloud3 (n+ � n−), therefore, particles have to annihilate “in
flight” producing a relatively narrow line blue- or red-shifted
dependently on the jet orientation. If so, then our estimation of
the electron number density n− from annihilation time scale is

3 A possibility that Nova Muscae lies in front of a large gas cloud
can not be totally excluded. In this case, particles could be injected into
this cloud, away from the observer.
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Table 1. Observational data and parameters of the emitting region.

1E 1740.7–2942

1990 Oct. 13–14 1992 Sep. 19–20
Nova Muscae

Annihilation rise time, ∆i <∼ 2 days (1–2 hr)∗ few hours ∼ 5 hr
Annihilation lifetime, ∆d 18–70 hr 27–75 hr <∼ 10 days
Annihilation photon flux, F500 (photons cm−2 s−1) 10−2 4.3× 10−3 6× 10−3

Total line flux, L500 (photons s−1) 8.6× 1043 (at 8.5 kpc) 3.7× 1043 7.2× 1041 (at 1 kpc)
Line width, W (keV) 240 180 40
Plasma temperature, kTe (keV) 35− 45 3− 4
Column density, NH (cm−2) ∼ 1023 ∼ 1021

Coulomb energy loss rate, dγ/dt 70 100
Annihilation rate, A 1 1
Electron number density, n− (cm−3) (5− 20)× 108 1.5× 108

Size of the emitting region, λ (cm) (1.1− 20)× 1013 (1.3− 50)× 1013

∗ Our estimation.

related to the average electron/positron number density in the
jet, its total volume is ofλ3 ∼ 2×1039 cm3 (∆d/10 days)2. The
reported 6%–7% redshift of the line centroid (Goldwurm et al.
1992; Sunyaev et al. 1992) supports probably the annihilation-
in-jet hypothesis, although authors noted that statistical signifi-
cance of this shift is not very high. The large size of the emitting
region and a small width of the line, both except the gravitational
origin of the redshift, since in this case the annihilation region
have to be quite close to the central object ∼ 10Rg where typical
flow velocities should result in a much broader line (Gilfanov et
al. 1991). The Compton scattering of the anisotropic emergent
radiation could provide effective mechanism for blowing away
and acceleration of e+e−-pair plasma (e.g., Kovner 1984; Misra
& Melia 1993) cooling it at the same time. Since the maximal
energy during the X-ray flare of Nova Muscae released near
∼ 1 keV (Greiner et al. 1991), the average kinetic energy per
particle should be nearly the same (which is consistent with the
small line width).

The case of the 1E source is not definitively clear, because
our estimations given− >∼ n+ in the emitting region. Two flares,
October 1990 and September 1992, have shown very similar
time scales, spectra and photon fluxes, which are consistent
with single injection of energetic particles into the thermal (hy-
drogen) plasma. Meanwhile, the redshift of the line ∼ 25%
reported by authors (Bouchet et al. 1991; Sunyaev et al. 1991;
Cordier et al. 1993) implies that positrons probably annihilate
in a plasma stream moving away from the observer. The estima-
tion of the size of the emitting region ruled out its gravitational
nature, since it is too large in comparison with gravitational
radius of a stellar mass black hole. A natural explanation of
this controversial picture is that the propagating plasma stream
captures matter from the source environment and annihilation
occurs in a moving plasma volume. In this case the estimation of
the electron number densityn− is related to the average electron
number density in the jet, λ3 >∼ 2.4 × 1039 cm3 (∆d/1 day)2

gives its total volume, and the jet length has to be of the order
of ∼ 0.2c∆d ≈ 5.2× 1014 cm (∆d/1 day).

While a part of the e+e−-pair probably annihilate in a ther-
mal plasma near the 1E source producing the broad line, the re-
mainder could escape into a molecular cloud, which was found
to be associated with the 1E source (Bally & Leventhal 1991;
Mirabel et al. 1991). The time scale for slowing down4 due to
the scattering could be obtained from Eq. (45). Taking ∼ 105

cm−3 for the average number density of the molecular cloud
near 1E (Bally & Leventhal 1991; Mirabel et al. 1991) one gets
∆i <∼ 1 year, the same as that obtained by Ramaty et al. (1992).
The size of the turbulent region in the cloud caused by propa-
gation of a dense jet should be of the same order. It agrees well
with the length 2–4 ly (15–30 arcsec at the 8.5 kpc distance) of
a double-sided radio jet from the 1E source found recently with
the VLA (Mirabel et al. 1992).

If the lines from the 1E source (Fig. 6) were produced by
continuous injection of energetic particles, then the observa-
tions of the narrow 511 keV line emission from the Galac-
tic center allows to put an upper limit on the particle es-
cape rate into the interstellar medium. Recent reanalysis of
HEAO 3 data has shown that under suggestion of a single
point source at the Galactic center narrow line intensities are
F511 = (1.25 ± 0.18) × 10−3 photons cm−2 s−1 for the fall
of 1979 and F511 = (0.99 ± 0.18) × 10−3 photons cm−2 s−1

for the spring of 1980 (Mahoney et al. 1994). Taking τ0 = 1
yr for the positron lifetime in 105 cm−3 dense cold molecular
cloud (Ramaty et al. 1992), and suggesting one hard state of
∆d >∼ 2 days long per period τ0, one can obtain an escape rate
E/A ≈ F511 τ0

F500 ∆d

<∼ 20, where we took F500 = 10−2 photons
cm−2 s−1 (see Table 1). This is consistent with the upper limits
of 1990 October 13–14 spectrum and the two most energetic
points in 1992 September 19–20 spectrum. The dashed line in
1990 October 13–14 spectrum (Fig. 6) shows the annihilation
line shape for Gaussian-like injection, ∼ exp[−(γ − 4)2], of
energetic particles into the thermal plasma of kT = 35 keV for

4 The corresponding annihilation lifetime ∆d (Eq. [46]–[47]) was
obtained for thermal plasma and is not valid for the cold medium where
positrons mostly annihilate in the bound (positronium) state.
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E/A = 20. The longest hard state (∼ 19 days) with the average
flux of F500 ≈ 2×10−3 photons cm−2 s−1 observed in October
1991 places the upper limit at almost the same levelE/A ≈ 10.

10. Conclusion

We have presented the accurate formulas in the form of a simple
expression or an one-fold integral for the energy losses and
gains of particles scattered by a Maxwell-Boltzmann plasma.
The processes concerned are the Coulomb scattering, e+e−-,
ee- and ep-bremsstrahlung as well as Comptonization in the
Klein-Nishina regime.

The problem of positron propagation is treated in a Fokker-
Planck approach, which can be easily generalized to include
inelastic processes, stochastic acceleration etc. We have shown
that the escape of positrons in the form of pair plasma has an ef-
fect on the positron distribution causing, in some cases, a strong
deviation from a Maxwellian. When the energy of injected parti-
cles essentially exceeds the average one of plasma particles, the
deviation appears as a deficit at lower energies and an extended
tail of the distribution that leads to a widening and smoothing
of the annihilation feature in the spectrum. In the case where
the energy of particles injected is close to the average energy of
plasma particles, the deviation appears as an injection bump and
a deficit in the tail of the distribution. Meanwhile, it does not
lead to visible distortions of the annihilation line shape which
is similar to that of thermal plasmas.

The performed calculations allow us to obtain reliable esti-
mations of the electron number density and the size of the emit-
ting regions in Nova Muscae and the 1E 1740.7–2942 source,
suggesting that spectral features in 300–600 keV region ob-
served by SIGMA telescope are due to the electron-positron
annihilation in thermal plasma. We conclude that in the case
of Nova Muscae the observed radiation is coming from a pair
plasma jet, n+ ≈ n−, rather than from a gas cloud. The case of
1E 1740.7–2942 is not definitively clear, n+ <∼ n−. Although
the observational data are consistent with annihilation in (hy-
drogen) plasma at rest, the redshift of the line suggests that it
could be also a stream of pair plasma with matter captured from
the source environment.
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